REVIEW-1

C-REACTIVE PROTEIN AND STATINS

BIBI KULSOOM AND S. NAZRUL HASNAIN

Department of Biochemistry, Ziauddin Medical College, Ziauddin University, Karachi, Pakistan – e-mail: drknpk@yahoo.com

ABSTRACT:

Atherosclerosis is now widely considered as a form of inflammatory disorder rather than merely a consequence of dyslipidemia. C-reactive protein (CRP) is an acute phase reactant, seen elevated in case of ongoing inflammation. Measuring both CRP and cholesterol provide a more accurate indication of risk than cholesterol estimation alone. It is observed that lipid lowering drugs reduce the incidence of coronary events and stroke. This is mainly due to the pleiotropic action which is independent of their hypolipidemic action.

In this review article, recent developments regarding the role of statin therapy in prevention of adverse cardiovascular events is discussed succinctly.

A. Background:

The prevalence of cardiovascular disorders is increasing day by day. Atherosclerosis is the most prevalent cause of these diseases (Libby, 2002), producing obstruction for normal blood flow, commonly leading to the infarction of the tissues or organs distal to the obstruction (Anderson *et al.*, 1998) For the last two and a half decades the understanding of the process of atherosclerosis has become much clearer (Libby, 2001).

Atherosclerosis is now widely considered as a form of inflammatory disorder. The association of inflammation and atherosclerosis can yield predictive and prognostic information of considerable clinical utility. In a variety of animal models of atherosclerosis, signs of inflammation occur together with incipient lipid accumulation in the arterial wall (Libby *et al.*, 2002). For example, blood leukocytes, which are mediators of host defenses and inflammation, localize in the earliest lesions of atherosclerosis. This phenomenon is observed in humans as well.

B. Association of C-Reactive Protein with Cardiovascular Disorders:

C-reactive protein (CRP) is an acute phase reactant, seen elevated in case of ongoing

inflammation. A strong association of elevated serum CRP has been observed with acute myocardial infarction (Yusuf et al., 2001; Albert et al., 2003; Koeing et al., 1999 and Morrow etal., 1998)), sudden coronary deaths and stroke (Burke et al., 2002 and LaMonte et al., 2002). In addition, it shows a positive correlation with the extent of coronary artery stenosis (Erren et al., 1999) Animal research (Barrett et al., 2002) has shown that serum CRP is positively correlated with myocardial infarct size. In patients of angina, whether stable or unstable, CRP has also associated to be an independent predictor of adverse cardiovascular events (Ikonomidis et al., 1999 and Ferreiros et al., 1999)).

Inflammation, systemic or local, triggers the production of pro-inflammatory cytokines, which can be used as markers for the inflammatory status of the individual (Libby *et al.*, 1999). During inflammation expression of cell adhesion molecules (required for leukocyte response to the area of injury), production of chemokines, and LDL uptake by macrophages (leading to formation of foam cells) are enhanced by mediators like endothelin-1 (ET-1) and interleukin-6 (IL-6) (Verma *et al.*, 2002). CRP, a member of the pentraxin family, consists of five identical

non-covalently linked subunits of 23,000 kDa md mass, the total molecular mass of CRP being 1 18,000kDa. Its serum concentration of <1 μg/ml can increase during the first 24-48 hours of inflammation or tissue necrosis by several thousand-fold (Burke *et al.*, 2002 and Cermak *et al.*, 1993). It stimulates the production of ET-1 and IL-6, thus facilitating pro-inflammatory state. Atherosclerotic plaque shows signs of local inflammation, like macrophage recruitment, foam cell formation, smooth muscle hyperplasia etc. (Verma *et al.*, 2002).

Normally functioning vascular endothelium opposes thrombosis as well atherosclerosis. CRP is also implicated in vascular endothelial dysfunction and in the progression of atherosclerosis (Venugopal et al., 2003). The normal endothelium does not support avid binding of white blood cells. However, early after the initiation of an atherogenic diet, patches of arterial endothelial cells begin to express on their surface selective adhesion molecules that bind to leukocytes. Vascular Cell Adhesion Molecule-1 (VCAM-1), an important adhesion molecule, binds particularly to those classes of leukocytes found in nascent atheroma, the monocytes and the T-lymphocytes (Libby et al., 2002), VCAM-1 rises before the leukocyte recruitment begins. Endothelial cells express VCAM-1 in response to cholesterol feeding (Libby et al., 2001). It is found that CRP also up-regulates adhesion molecule expression on vascular (Libby, 2002) endothelium.

CRP causes the opsonization of the native LDL which is then taken up by the macrophages. The macrophages ultimately convert into foam cells by accumulating large amount of lipids (Zwaka et al., 2001). So this process can happen without acetylation, oxidation, and enzymatic modification of LDL (Zwaka et al., 2001 and Torzewski et al., 1998). Thus, higher CRP levels can potentially make the atheroma more grumous and vulnerable to rupture. This could be a reason why some studies have shown an association between high serum CRP with higher rate as

well as poorer prognosis of the coronary events (Burke *et al.*, 2002; Libby *et al.*, 1999; Verma *et al.*, 2002; Ridker, 2001 and Sano *et al.*, 2003).

CRP stimulates the production of ET-1 and IL-6, thus facilitating pro-thrombotic state. CRP is thus a mediator of atherosclerosis because it contributes to the substrate underlying the atherosclerotic plaque's formation as well as rupture ultimately leading to the coronary thrombosis (Verma *et al.*, 2002).

In deciding whether a patient requires therapy to prevent an atherosclerosis-related heart attack or stroke, physicians usually rely heavily on measurements of cholesterol in the person's blood, thus missing many vulnerable individuals. Several studies suggest that measuring blood concentration of CRP could add useful information. It was recently reported that examining both CRP and cholesterol provide a more accurate indication of risk than cholesterol estimation alone. (Libby, 2002; Anderson et al., 1998; Burke et al.,2002; LaMonte et al., 2002 and Zwaka et al., 2001). The high sensitivity assay of CRP is well standardized, widely available, and reproducible that adds to the predictive value of traditional risk factors of cardiovascular disorders, including the lipoprotein profile (Libby, 2001).

A large number of studies suggest that elevated serum CRP is an independent risk factor for atherosclerotic vascular disease (Anderson et al., 1998; Koenig et al., 1999; Morrow et al., 1998; Burke et al., 2002 and Ridker et al., 1998). It is associated with twoto five-fold increased risk of coronary events (2, 10) as well as poor prognosis in acute coronary syndrome (Burke et al., 2002; Sano et al., 2003). Large prospective studies have shown strong, independent association of high serum levels of CRP with risk of MI, stroke, peripheral arterial disease and vascular death among individuals without known cardiovascular disease (Sano et al., 2003). In addition, among the patients with acute

Kulsoom & Hasnain 51

coronary ischemia, stable angina pectoris, and history of myocardial infarction, higher levels of the CRP have been associated with increased event rate (Libby and Ridker, 1999; Verma et al., 2002 and Ridker, 2001). It has also been seen that there is variation in plasma CRP levels by race (LaMonte et al., 2002). We reported in a study conducted recently (article accepted, in press: Journal of Pakistan Medical Association) in a Karachi-based population sample that serum CRP was significantly raised in subjects suffering from myocardial infarction as compared to otherwise healthy controls.

It is observed that lipid lowering drugs reduce the incidence of coronary events and stroke. This is mainly due to their pleiotropic action. In animals with experimental atherosclerosis, lowering plasma lipids reduces the number of inflammatory cells, including macrophages and various inflammatory mediators as well as the level of the collagenolytic enzymes such as metallo-proteinase-1 (Libby, 2001), all the factors inflicted in the progress of atherosclerosis.

C. Role of Statins in Cardiovascular Disorders:

Statins are effective hypolipidemic agents. The group consists of several agents for example atorvastatin, fluvastatin, lovastatin, pravastatin and simvastatin. All these agents are inhibitors of an enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase, which is the rate-limiting enzyme in de-novo cholesterol synthesis in liver (Malloy and Kane, 2004).

Since dyslipidemia is an important factor governing the onset and progression of atherosclerosis-related cardiovascular diseases, statins are one of the widely prescribed drugs for primary and secondary prevention of cardiovascular events all over the world. Several large clinical trials of secondary prevention of coronary heart disease have shown that statins reduce the risk of death by about 30% (Anonymous, 1994; 1998).

A recently published meta-analysis (Law et al., 2003) concluded that statins can lower

LDL cholesterol concentration by an average of 1.8 mmol/l which reduces the risk of ischemic heart disease events by about 60% and stroke by 17%. However, recent studies indicate that controlling dyslipidemia is just one aspect of the beneficial role of statins in prevention of cardiovascular disease.

There are other mechanisms also through which the statins may act and contribute to the overall benefit in prevention of cardiovascular diseases, such as stabilizing atherosclerotic plaques, improving endothelial dysfunction, controlling immune and inflammatory response, reducing free radical injury as well as thrombogenicity (Muniz-Junqueira *et al.*, 2006; Martin-Ventura *et al.*, 2005; Davignon, 2004; Delbosc *et al.*, 2002; Albert *et al.*, 2001 and Joukhadar *et al.*, 2001).

Schillinger et al. (2004) conducted a study in which they examined the interrelationship between statin therapy, inflammation and cardiovascular outcomes in 515 patients with atherosclerotic arterial disease. As inflammatory markers they analyzed hs-CRP, SAA, serum fibrinogen, serum albumin and neutrophil count. They reported that statin therapy works best in patients having adverse levels of inflammatory markers. Since fibrinogen is a coagulation factor as well, a reduction in its levels may also decrease the prothrombotic state (Schillinger et al., 2004).

It is also reported that continuous statin therapy leads to regression of atherosclerotic plaques (Corti et al., 2002). In addition, statins help in plaque stabilization by reducing the production of matrix metalloproteinases by macrophages, which are involved in digestion of matrix proteins within the atheromatous plaque (Crisby et al., 2001). This effect reduces the chances of plaque rupture and subsequent thrombosis.

D. Effect of Statin Therapy on Serum C-Reactive Protein:

The role of inflammation in onset and progress of atherosclerosis is currently the focus of research. Elevated levels of

inflammatory markers such as acute phase reactants (serum CRP, serum amyloid A protein [SAA]) interleukin-6, and cell adhesion molecules have been associated with increased risk for adverse cardiovascular events. CRP levels, especially, appear to be among the most powerful predictors of adverse cardiovascular events. Statin therapy reduces inflammation and risk of cardiovascular events. The Cholesterol and Recurrent Events (CARE) trial has reported that subjects with elevated levels of CRP and SAA benefited more from statin therapy as compared to those with lower levels of these markers. The relative risk of a recurrent coronary event was significantly reduced in both groups, compared with placebo. At baseline, both subsets had nearly identical plasma lipid profile (Ridker et al., 1998). In addition, continuous statin therapy reduces serum CRP levels (Albert et al., 2001; Ridker et al., 2005 and Jialal et al., 2001) and increases survival (Ridker et al., 2005).

Jialal *et al.* (2001) reported in a crossover trial comparing the effect of pravastatin, simvastatin, and atorvastatin therapy on hs-CRP levels in patients with combined hyperlipidemia that at doses reported to have equivalent effects on LDL-cholesterol. Median hs-CRP levels were significantly reduced irrespective of reductions in LDL-cholesterol.

E. Anti-Inflammatory Role of Statins:

Adhesion molecules and chemoattractants also play an important role in the inflammatory process in concert with acute phase reactants such as CRP and SAA by favoring adhesion and transmigration of leukocytes to the subendothelial tissues as part of the atherogenic process (Blake *et al.*, 2001). Recently it was demonstrated that statins irrespective of their inhibitory effect on HMG-CoA reductase could have a selective and potent direct anti-inflammatory effect via blockade of beta2 integrin leukocyte function antigen-1 (LFA-1) (Weitz-Schmidt *et al.*, 2001).

As described earlier, statins also reduce

the production of matrix metalloproteinases by macrophages, thus limiting the inflammatory response (Corti *et al.*, 2002).

F. Conclusion:

Since statins reduce CRP as well as immune response, block novel targets in the activation of leukocytes, downregulate cell adhesion molecules and curtail free radical production, it becomes evident that statins' pleiotropic effect is not dependent upon cholesterol synthesis inhibition. Instead, it is a combination of both lipid-lowering and pleiotropic activity which is the key to success. That is why statins are emerging as important modality in prevention of adverse cardiovascular events in the practice of modern medicine. In addition, it can also be inferred that while investigating cardiovascular risk, one should not omit the value of measuring inflammatory markers in serum.

REFERENCES

Libby P (2002b). Inflammation in atherosclerosis. *Nature*. **420**: 868-74.

Anderson JL, Carlquist JF, Muhiestein JB, Home BD and Elmer SP (1998). Evaluation of C-reactive protein, an inflammatory marker, and infectious serology as risk factors for coronary artery disease and myocardiai infarction. *J Am Coil Cardiol.*, **32**: 35-41.

Libby P (2001). Current concepts of the pathogenesis of the acute coronary syndromes. *Circulation*. **104**:365-72.

Libby P, Ridker PM and Maseri A (2002). Inflammation and Atherosclerosis. *Circulation*. **105**: 1135-43.

Yusuf S, Reddy S, Ounpuu S and Anand S (2001). Global burden of cardiovascular diseases: Part-I. *Circulation*. **104**: 2746-53.

Albert MA, Glynn RI and Ridker PM (2003).

Plasma concentration of C-reactive protein and calculated Framingham Coronary Heart Disease Risk Score.

Circulation. 108: 161-65.

Koenig, W, Sund, M, Frohlich, M, Fischer H, Lowel H, Doring A, Hutchinson WL and Pepys MB (1999). C-reactive protein, a Kulsoom & Hasnain

- sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men. Results from the MONICA Ausburg Cohort study, 1984 to 1992. *Circulation*. **99**: 237-41.
- Morrow DA, Rifai N, Antman EM, Weiner DL, McCabe CII, Cannon CP and Braunwald E (1998). C-reactive protein is a potent predictor of mortality independently and in combination with troponin I in acute coronary syndromes: A TLMI 11A substudy. *J Am Coil Cardiol*. **31**: 1460-65.
- Burke AP, Tracy RP, Kolodgie F, Malcom GT, Zieske A, Kutys R, Pestaner I, Smialek J and Virmani R (2002). Elevated C-reactive protein values and Atherosclerosis in sudden coronary death. Association with different pathologies. *Circulation*. **105**: 2019-23.
- LaMonte MJ, Durstine JL, Yanowitz FG, Lim T, DuBose KD, Davis P and Ainsworth BE (2002). Cardiorespiratory Fitness and C-reactive protein among a Tn-Ethnic Sample of Women. *Circulation*. **106**: 403-06.
- Erren M, Reinecke H, Junker R, Fobker M, Schulte H and Schurek JO *et al* (1999). Systemic Inflammatory Parameters in Patients With Atherosclerosis of the Coronary and Peripheral Arteries. *Arterioscler. Thromb. Vasc. Biol.*, **19**: 2355-63.
- Barrett TD, Hennan JK, Marks RM and Lucchesi BR (2002). C-reactive-protein-associated increase in myocardial infarct size after ischemialreperfusion. *J Pharmacol Exp Ther.* **303**: 1007-13.
- Ikonomidis I, Andreotti F, Economou E, Stefanadis C, Toutouzas P and Nihoyannopoulos P (1999). Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin. *Circulation*. **100**: 793-98.
- Ferreiros ER, Boissonnet CP, Pizarro R, Merletti PF, Corrado G, Cagide A and Bazzino OO (1999). Independent prognostic value of elevated C-reactive protein in unstable angina. *Circulation*. **100**:1958-63.

Libby P and Ridker PM (1999). Novel inflammatory markers of coronary risk. *Circulation*. **100**: 1148-50.

53

- Verma S, Wang CH, Li S, Dumont AS, Fedak PWM and Badiwala MV *et al* (2002). C-Reactive Protein attenuates NO production and inhibits Angiogenesis. *Circulation*. **106**: 913-19.
- Cermak J, Key NS, Bach RR, Balla J, Jacob HS and Vercellotti GM (1993). C-Reactive Protein Induces Human Peripheral Blood Monocytes to synthesize Tissue Factor. *Blood.* **82**: 513-20.
- Venugopal SK, Devraji S and Jialal I (2003). C-Reactive Protein Decreases Prostacyclin Release From Human Aortic Endothelial Cells. *Circulation*. **108**: 1676-78
- Libby P (2002a). Atherosclerosis: The New View. *Scientific American*. **286**: 46-55.
- Zwaka TP, Hombach V and Torzewski J (2001). C-Reactive Protein-Mediated Low Density Lipoprotein Uptake by Macrophages; Implications for Atherosclerosis. *Circulation*. **103**: 1194-97.
- Torzewski J, Torzewski M, Bowyer DE, Frohlich M, Koenig W, Waltenberger J, Fitzsimmons C and Homback V (1998). C-Reactive Protein frequently co-localizes with the terminal complement complex in the intima of the early atherosclerotic lesions of human coronary arteries. *Arterioscler Thromb Vasc Biol.* 18: 1386-92.
- Ridker PM (2001). High sensitivity C-Reactive Protein: Potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. *Circulation*. **103**: 1813-18.
- Sano T, Tanaka A, Namba M, Nishibori Y, Nishida Y, Kawarabayashi T, Fukuda D, Shimada K and Yoshikawa J (2003). C-Reactive Protein and lesion morphology in patient with acute myocardial infarction. *Circulation*. 282-85.
- Ridker PM, Rifai N, Pfeffer MA, Sacks FM, Moye LA and Goldman S *et al* (1998). Inflammation, Pravastatin, and the Risk of Coronary Events After Myocardial Infarction in Patients With Average Cholesterol Levels. *Circulation*. **98**: 839-44.

- Malloy MJ and Kane JP. (2004). Agents used in Hyperlipidemia. In: Basic & Clinical Pharmacology. Ed. Katzung BG. 9th edition. The McGraw-Hill Companies, Boston, USA.
- Anonymous (1994). 4S group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian simvastatin survival study (4S). *Lancet*, **344**: 1383-89.
- Anonymous (1998). LIPID Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. *N Engl J Med*, **339**: 1349-57.
- Law M R, Wald NJ and Rudnicka AR (2003). Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. *BMJ*, **326**: 1423-29.
- Muniz-Junqueira MI, Kamib SR, de Paula-Coelho VN and Junqueira LF Jr (2996). Effects of pravastatin on the in vitro phagocytic function and hydrogen peroxide production by monocytes of healthy individuals. *Int Immunopharmacol.* **6**: 53-60.
- Martin-Ventura JL, Blanco-Colio LM, Gomez-Hernandez A, Munoz-Garcia B, Vega M and Serrano J *et al.* (2005). Intensive treatment with atorvastatin reduces inflammation in mononuclear cells and human atherosclerotic lesions in one month. *Stroke.* **36**(8): 1796-800.
- Davignon J (2004). Beneficial Cardiovascular Pleiotropic Effects of Statins. *Circulation*, **109**: 3943.
- Delbosc S, Morena M, Djouad F, Ledoucen C, Descomps B and Cristol JP (2002). Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are able to reduce superoxide anion production by NADPH oxidase in THP-1-derived monocytes. J Cardiovasc Pharmacol. 40: 611-17.
- Albert MA, Danielson E, Rifai M and Ridker

- PM (2001). Effect of statin therapy on serum C-reactive protein levels. *JAMA*, **286**: 64-70.
- Joukhadar C, Klein N, Prinz M, Scbrolnberger C, Vukovich I and Wolzt M et al (2001). Similar effects of atorvastatin, simvastatin and pravastatin on thrombogenic and inflammatory parameters in patients with hypercholesterolemia. *Thromb Haemost*. **85**: 47-51.
- Schillinger M, Exner M, Mlekusch W, Amighi J, Sabeti S and Muellner M *et al* (2004). Statin therapy improves cardiovascular outcome of patients with peripheral artery disease. *European Heart Journal*. **25**: 742-48.
- Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G and Smith D *et al* (2002). Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years' follow-up by high-resolution noninvasive magnetic resonance imaging. *Circulation.* **106**: 2884-87.
- Crisby M, Nordin-Frednksson G and Shah PK et al (2001). Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 103: 926-33.
- Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM and McCabe CH *et al* (2005). (PROVE IT-TIMI 22) Investigators. C-Reactive Protein Levels and Outcomes after Statin Therapy. *N Engl J Med.* **352**: 20-28.
- Jialal I, Stein D, Balis D, Grundy SM, Adams-Huet B and Devaraj S (2001). Effect of Hydroxymethyl Glutaryl Coenzyme A Reductase Inhibitor Therapy on High Sensitive C-reactive Protein Levels. Circulation. 10: 1933-35.
- Blake GJ and Ridker PM (2001). Novel clinical markers of vascular wall inflammation. *Circ Res.* **89**: 763-71.
- Weitz-Schmidt G, Welzenbach K and Brinkmann V *et al* (2001). Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. *Nature Med.* 7: 687-92.

Pakistan Journal of Pharmacology Vol.23, No.2, July 2006, pp.49-54