ANTIOXIDANT AND ANTIDIABETIC POTENTIALS OF A DIMETHOXYLATED FLAVONE OBTAINED FROM HELIANTHUS ANNUUS L. LEAF EXTRACT

CHARLES O. NNADI¹, SAMUEL O. ONOJA²*, GLADYS C. EZEH³, CHINYERE B. C. IKPA⁴, MAXWELL I. EZEJA², SAMUEL C. UDEM⁵, ARUH O. ANAGA⁵, ISAAC U. ASUZU⁵

¹Department of Pharmaceutical and Medicinal Chemistry University of Nigeria Nsukka, 410001 Enugu State, Nigeria

²Department of Veterinary Physiology and Pharmacology, Michael Okpara University of Agriculture Umudike, PMB 7267, Abia State, Nigeria ³Department of Agriculture, Alex Ekwueme Federal University Ndufu Alike-Ikwo, Ebonyi State, Nigeria

⁴Departement of Chemistry, Imo State University PMB 2000, Owerri, Imo State Nigeria ⁵Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, 410001 Enugu State, Nigeria

ABSTRACT

Pectolinarigenin (5,7-dihydroxy-6,4'-dimethoxyflavone) is a methoxylated flavone found in most medicinal plants. This study interrogated the antioxidant and antidiabetic potentials of a pectolinarigenin obtained from *Helianthus annuus* L. leaves. The pectolinarigenin was obtained via a combination of solvent-solvent partitioning, column chromatography (CC), thin layer chromatography and high-performance liquid chromatography (HPLC) techniques. The antioxidant potential of the pectolinarigenin was investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide scavenging tests while the antidiabetic effect was interrogated in alloxan-induced diabetic rats. The pectolinarigenin significantly inhibited DPPH (54.9 %) and nitric oxide (46.1 %) compared with 96.9 and 53.2 % reductions respectively by vitamin C. Pectolinarigenin also reduced fasting blood sugar levels in a time-dependent manner and elicited optimum activity (66.3 %) within 6 h post-treatment at 10 mg/ kg compared with 68.9 % of glibenclamide (2 mg/kg). The pectolinarigenin elicited significant (p < 0.05) antioxidant and antidiabetic properties and might be useful in the development of novel antidiabetic, antioxidant and anti-inflammatory compounds.

Keywords: Antidiabetic, antioxidant, *Helianthus annuus*, pectolinarigenin, fractionation.

INTRODUCTION

Diabetes mellitus (DM) is a non-communicable disease with high prevalence in both developed and developing countries (Bhutkar and Bhise, 2013). The prevalence ranges from 6-11.4% depending on the region (International Diabetes Federation, 2019). DM is characterized by hyperglycemia emanating

from reduced insulin secretion and/or sensitivity (American Diabetes Association, 2009). Hyperglycemia predisposes to conditions like oxidative stress, retinopathy, neuropathy, nephropathy and cardiovascular diseases. The pathogenesis of these diabetic complications is attributed to oxidative stress and antioxidants have been shown to ameliorate diabetic complications.

^{*}Corresponding author: e-mail: onoja.samuel@mouau.edu.ng

The World Health Organization reported that about 80 % of world population depends on herbal products for their primary healthcare needs (Ekor, 2014). There is increasing patronage of herbal preparation in the management of DM due to problems associated with orthodox antihyperglycemic medicines. Herbal medicines are being used because they are perceived to have less side effects, cheaper, readily available and more efficacious (Ekor, 2014). Several bioactive principles with proven antidiabetic properties have been isolated from medicinal plants (Aba and Asuzu, 2018). Flavones are among the most frequently encountered subclass of flavonoids in medicinal plants (Berim and Gang, 2016). Some examples of flavones are apigenin, luteolin, tangeritin, chrysin, 6hydroxyflavone, baicalein. scutellarein. wogonin, diosmin and flavoxate (Unnikrishnan et al., 2014). Many flavones have been isolated from plants (Miean and Mohamed, 2001; Zhao et al., 2010). Antioxidant, antihyperglycemic, antitumor, anti-inflammatory, hepatoprotective antibacterial activities of some flavones have been documented (Chen et al., 2012; Farhadi et al., 2019).

Helianthus annuus L (sunflower) is grown mainly for its nutritional and medicinal values (Guo et al., 2017). It is also used in folklore medicine in the treatment of heart disease, respiratory tract infections, wound and diabetes mellitus (Guo et al., 2017). Some bioactive flavonoids, terpenes, caffeic acid and several essential oils have been isolated from H. annuus L. (Ceccarini et al., 2004; Amakura et al., 2013; Bashir et al., 2015). The antimicrobial, anti-inflammatory, hypertensive, wound-healing, and antidiabetic properties as well as the antioxidant potential of heliangolide derivative isolated from H. annuus have been reported (Onoja and Anaga, 2014; Onoja et al., 2020). Despite its rich source of flavonoids, the antidiabetic and/or antioxidant properties of flavonoids from H. annuus have not been reported. In this paper, therefore. we report the isolation, characterization and antidiabetic/antioxidant potential of a flavone of *H. annuus* leaf.

MATERIALS AND METHODS

Plant collection and extract preparation

Helianthus annuus leaves were harvested in the wild within the environment of University of Nigeria, Nsukka, in June 2016 and identified by Mr A. O. Ozioko. A voucher sample (UNN/VPP/2012/2) was kept in the departmental herbarium for reference. The plant samples were air dried on laboratory bench. Cold maceration in 80 % methanol (Fischer Chemicals, UK) for 48 hours was adopted in preparation of hydromethanol extract of H. annuus leaves (HEHA) as reported by Onoja and Anaga (2017).

Solvent-solvent partitioning of HEHA

The HEHA was partitioned as described by Bibi *et al.* (2011). Briefly, the extract (50 g) was re-dissolved in 10 % methanol (MeOH) and successively partitioned in equal volumes each of n-hexane, dichloromethane (DCM), ethyl acetate (EtOAc) and water using separating funnel. The crude extract yielded *n*-hexane (3.11 g), DCM (6.80 g) ethyl acetate (11.14 g), and water (17.23 g) after evaporation to dryness.

Thin layer chromatographic (TLC) analysis

Pre-coated silica gel 60 F_{254} plates, 20×10 cm (Merck KGaA GmbH, Germany) and solvent system composed of CHCl₃, EtOAc and MeOH (ideal ratio was determined for each experimental) at room temperature was used for TLC analysis. Appropriately developed plates were viewed under UV light at 254/365 nm or with anisaldehyde-sulphuric acid (Merck KGaA, Germany) detecting reagent.

Column chromatographic fractionation of EtOAc fraction

The column chromatographic fractionation of the EtOAc fraction was as previously described by Onoja *et al.* (2014). Briefly, 10.0 g of EtOAc fraction was dissolved in the first mobile phase (n-

hexane/EtOAc/MeOH, 7:2.8:0.2) and loaded on top of the silica gel 60 (0.06-0.20 mm particles) slurry packed column, 90 × 8 cm (GE Healthcare Europe GmbH, Germany), fraction/silica gel ratio, 1:70, at ambient temperature. The fraction was eluted with a mobile phase composed of n-hexane, EtOAc and MeOH starting with 70 % n-hexane, 28 % EtOAc and 2 % MeOH and gradually increasing the proportion of EtOAc up to 80 % keeping MeOH at 2 % at a flow rate of 1 ml/min. The collected eluates (10–15 mL) from the column chromatography (CC) fractionation of EtOAc fraction were analysed by TLC and subsequently pooled into five CC fractions (tubes 17-239) based on their TLC profiles as follows: M.1, 1220 mg (tubes 17-76), M.2, 1400 mg (tubes 79–128), M.3, 560 mg (tubes 130-148), M.4, 3050 mg (tubes 151–197) and M.5, 631 mg (tubes 200–239).

Following the results of the biological assays, M.4 (most active fraction) was further subject to CC separation on a 50 x 5 silica gel column, fraction/silica gel ratio, 1:50, at ambient temperature using isocratic mobile solvent EtOAc, MeOH, HAc (8.9:1.0:0.1) 1500 ml at flow rate of 1 ml/min. The eluates were analysed and pooled into five subfractions (M.4.1, M.4.2, M.4.3, M.4.4 and M.4.5) based on the TLC profile.

Semi-preparative HPLC isolation of compound

Semi-preparative HPLC system (Jasco, Germany) was used to purify sub-fraction M.4.4 (650 mg), obtained from the CC as described by Onoja et al. (2020). Reverse phase column Reprosil 100 C-18 (250 × 20 mm, 5 µm) with binary gradient of the mobile phase (water and methanol) at a flow rate of 10 mL min⁻¹ column temperature of 40 °C and sample injection loop of 1000 µL was for the separation. The mobile phase (water and methanol) gradient was optimized as follows: 60–30 % of water (10 min), 30–20 % water (5 min), 20-10 % water (5 min), 10-0 % water (5 min) and 0 % water (10 min) and additional 5 minutes to return the system to the initial mobile phase.

Structural characterization of the isolated compound

61

Structural characterization of the isolated compound was conducted as reported by Onoja et al. (2020). 1D- and 2D-NMR spectra were recorded on the Agilent DD₂ 600 MHz spectrometer (Agilent Technologies, USA) at 25 °C in CDCl₃. The recorded spectra were referenced to the solvent signals of ¹H 7.260 ppm and ¹³C 77.000 ppm (CDCl₃) and with MestRENOVA v. processed (Mestrelab Research, Chemistry Software Solutions, USA) software. The chemical shift (d) of ¹H and ¹³C NMR data were measured in ppm, while the multiplicity and the coupling constant (J) of ¹H were measured in Hz. All the spectra data were compared with the literature data.

Antioxidant activity

The solvent-fractions in the concentration range 25–400 ppm and sub-fractions (400 ppm) were used in the following experiment in triplicate and vitamin C was used as reference standard.

2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition test

The DPPH (Merck KGaA, Germany) inhibition potentials of solvent-fractions, CC-fractions and sub-fractions derived from the HEHA were investigated (Onoja *et al.*, 2017). DPPH is a stable free radical that changes colour from violet to yellow colour within 30 minutes, when it reacts with hydrogen donors at room temperature.

Nitric oxide scavenging (NOS) activity

The nitric oxide scavenging potential of solvent-fractions, CC-fractions and subfraction derived from the HEHA were evaluated using Griess reaction method (Marcocci *et al.*, 1994). The principle is based on the indirect estimation of amount nitric oxide released from sodium nitroprusside in an aqueous medium (physiological pH) with Griess reagent.

Experimental animals

Mature (70 days old) male albino Wistar rats $(170 \pm 5 \text{ g})$ were procured for the study. The rats were kept in aluminum cages in an ventilated house adequately at room $(25-27^{\circ}C)$ temperature and natural light/darkness cycle. Two weeks was allowed for the adaptation of the rat to the environment. The ethical clearance for the study was obtained from the Michael Okpara University of Agriculture, Umudike, Animal Committee (MOUAU/CVM/REC /201816).

Antidiabetic activity

Alloxan monohydrate-induced diabetic rats were used for the study (Sebai et al., 2015; Onoja et al., 2020). The antidiabetic activity of the solvent-fractions was evaluated at 300 mg/kg while the sub-fractions were evaluated at 50 mg/kg. The negative control groups received 5 % Tween-20 (5 mL/kg) and distilled water (5 mL/kg) for the solventfractions and sub-fractions, respectively. Glibenclamide (2 mg/kg) was used as the reference standard. All treatments were administered par os via gastric gavage. The fasting blood sugar (FBS) level was evaluated 1, 3, and 6 h post treatment via a snip on the tail vein, with Accu-Chek active glucometer (Roche, UK).

STATISTICAL ANALYSIS

The data were presented as mean ± SEM and analyzed using one-way analysis of variance (ANOVA). Dunnett's test (SPSS, version 20) was used to separate mean difference and significance was accepted at p< 0.05.

RESULTS AND DISCUSSION

Characterization of isolated compound

The isolation and characterization of a bioactive antidiabetic and antioxidant flavone (pectolinarigenin) was reported herein. Bioassay-guided isolation method was adopted in the isolation of the pectolinarigenin from EtOAc-soluble fraction of *Helianthus annuus*

leaf. Pectolinarigenin was isolated from the most active sub-fraction of HEHA as cream amorphous substance, mol. formula $C_{17}H_{11}O_6$; calc. mol mass 314.2903 g/mol, UV^{MeOH} 200 nm, tR 7.359 min (Fig. 1), hRf 0.46 (EtOAc, MeOH, HAc 9.4:0;5:0.1) 1H NMR (CD₃OD, 600 MHz) and ^{13}C NMR (150 MHz): see Table 1.

The EtOAc soluble of HEHA, subjected to repeated CC fractionation and semi-preparative HPLC purification, yielded a known amorphous substance, a dimethoxylated, dihydroxyl flavone called pectolinarigenin (Jeong *et al.*, 2013; Lu *et al.*, 2014; Liao *et al.*, 2010) that was identified by ¹H and ¹³C NMR spectra data. Two-dimensional NMR was used to unravel ¹H and ¹³C chemical shift assignments of the flavonoid. The detailed COSY and HMBC correlations are illustrated as insert in Fig. 1.

The separation and purification processed improved the antidiabetic and antioxidant activities of the fractions. The selection of the most active fraction for further purification was based on the time of onset and the degree of reduction in the fasting blood sugar levels. This is because the best candidate antidiabetic drug is the one that can reduce blood glucose level within a short while to control postprandial hyperglycemia, which is problematic in diabetic patients (Patel *et al.*, 2016).

The structure was further confirmed by spectral data of pectolinarigenin previously isolated from Cirsium chranroenicum (Lim et al., 2008). To the best of our knowledge, we are the first to report the isolation of this flavone from Helianthus annuus. Pectolinarigenin (5,7-dihydroxy-6,4'dimethoxyflavone) is a methoxylated flavone. The methoxylation of flavones increase their metabolic stability and membrane transport in liver and intestine, thus improving the bioavailability. Pectolinarigenin has been isolated from the aerial part of Cirsium chanroenicum, Linaria japonica, Chromolaena odorata, Cirsium setidens, Clerodendrum phlomidis,

Arnica montana. Arnica angustifolia, Teucrium chamaedrys, Cirsium japonicum, Japanese Chrysanthemum spp, Ruellia spp (Liao et al., 2010; Jeong et al., 2013; Lu et al., 2014). antidiabetic effects The pectolinarigenin isolated from Cirsium japonicum has been reported (Liao et al., 2010). Other pharmacological activities such as anti-inflammatory, cytotoxic, α-glucosidase inhibitor. α-amylase inhibitor. hepatoprotective and antioxidant activities of pectolinarigenin have been documented (Lim et al., 2008; Yoo et al., 2008; Noh et al., 2013; Lu et al., 2014; Wang et al., 2016; Zhang et al., 2016).

Antioxidant activities

The fractions produced concentration-dependent increases in the DPPH photometric assay (Table 2). The antioxidant activities of the fractions were lower (p < 0.05) when compared to vitamin C. The antioxidant activities of the fractions are arranged in the following descending order: EtOAc > n-hexane > DCM > MeOH. The 50 % inhibitory concentration (IC₅₀) of the fractions were > 400 ppm.

In the NOS model (Table 2), all the fractions (except hexane) produced concentration-dependent increase in NOS activity. The IC₅₀ of DCM, n-hexane and methanol-fractions were > 400 ppm while the IC₅₀ of EtOAc and vitamin C were ≤ 400 ppm.

The results of the antioxidant activities of CC fractions (M.1 – M.5) and sub-fractions (M.4.1 – M.4.5) are presented in Table 3. In DPPH assay, the IC₅₀ of the fractions were less than 400 ppm concentration (except M.1). The antioxidant activities of the fractions were lower (p < 0.05) when compared to vitamin C. The NOS capacities of M.2–M.5 at 400 ppm concentration were comparable to vitamin C. The IC_{50s} were also > 400 ppm whereas the IC₅₀ of vitamin C was < 400 ppm.

The results of the antioxidant activities of CC sub-fractions (M.4.1 - M.4.5) are also

presented in Table 3. In DPPH photometric assay, all sub-fractions (M.4.1–M.4.5) exhibited antioxidant activities which were lower (p < 0.05) when compared to vitamin C. The IC $_{50s}$ of M.4.1 and M.4.2 were > 400 ppm while the IC $_{50s}$ of M.4.3, pectolinarigenin and M.4.5 were < 400 ppm. The NOS activities of M.4.1, M.4.3 and pectolinarigenin were not significant (p > 0.05) when compared to NOS of vitamin C while the NOS of M.4.2 and M.4.5 were lower (p < 0.05) when compared to NOS of vitamin C.

Flavonoids exhibit antioxidant activity via direct or indirect mechanisms. The direct mechanisms involve scavenging of free radicals, inhibition of oxidase, activation of antioxidant enzymes, chelation of metals etc., while the indirect mechanisms are inhibition of enzymatic processes associated with free radical liberation and activation of endogenous antioxidant enzymes (Unnikrishnan et al., 2014). The pectolinarigenin could elicit its antioxidant activity via any of aforementioned mechanism. The scavenging of nitric oxide radical corroborated the inhibition of nitric oxide production in vivo as reported by Lim et al. (2008). The antioxidant potential of pectolinarigenin is advantageous in quenching of free radicals that abound in diabetic conditions (Lobo et al., 2010). The reported anti-inflammatory potential pectolinarigenin will help in the control of inflammatory reaction that characterizes hyperglycemia and diabetes mellitus (Lim et al., 2008). Diabetes mellitus has been described as a chronic inflammatory condition and anti-inflammatory drugs are reported to be useful in its management (Tsalamandris et al., 2019).

Antidiabetic activity

The results of the antidiabetic activities of the fractions are presented in Table 4. The EtOAc-fraction and glibenclamide-treated groups showed significant (p<0.05) time-dependent increases in the percentage reduction of FBS when compared to 5 % Tween-20 (5 mL/kg)-treated group.

Spectral data of pectonnangenin					
Carbon position	¹³ C, δ (ppm)	1 H, δ , ppm (mult., J (Hz))	¹³ C/ ¹ H HSQC		
2	164.3		-C-		
3	103.9	6.56, 1H, <i>d</i> , 2.7	-CH-		
4	183.1	-	-C-		
5	152.3	-	-C-		
6	130.4	-	-C-		
7	155.1	-	-C-		
8	93.6	6.58, 1H, <i>d</i> , 2.7	-CH-		
9	153.3	-	-C-		
10	105.9	-	-C-		
1'	-	-	-		
3'	114.7	7.01, 1H, <i>dd</i> , 3.2, 8.9	-CH-		
2'	128.2	7.83, 1H, <i>dd</i> , 2.9, 8.7	-CH-		
4'	162.8	-	-C-		
6'	128.2	7.83, 1H, <i>dd</i> , 8.7, 2.9	-CH-		
5'	114.7	7.03, 1H, <i>dd</i> , 8.9, 3.2	-CH-		
4'-OCH ₃	55.7	3.89, 3H, s	-CH ₃		
6-OCH ₃	61.0	4.03, 3H, s	-CH ₃		

Table 1 Spectral data of pectolinarigenin

¹H and ¹³C spectra were recorded at 600 and 150 MHz in CDCl₃ respectively

Table 2 Antioxidant activities of solvent fraction of HEHA

6.50, 1H, s

-OH

Assay models	Treatment/ppm	25	50	100	200	400
DPPH RSA	Hexane	21.03 ± 0.18	23.56 ± 0.42	31.37 ± 0.14	35.58 ± 0.43	43.95±0.36
	DCM	23.56 ± 0.28	25.00 ± 0.07	26.44 ± 0.14	34.74 ± 0.35	41.11 ± 0.69
	EtOAc	15.50 ± 0.35	28.00 ± 0.42	44.19 ± 0.31	45.07 ± 0.46	52.40 ± 0.42
	Aqueous	19.71 ± 0.21	19.23 ± 0.14	22.36 ± 0.42	28.37 ± 0.28	35.58 ± 0.42
	Vitamin C	85.84 ± 0.18	89.26 ± 0.83	93.14 ± 0.53	96.32 ± 0.10	96.61 ± 0.57
NOS activity	Hexane	4.96 ± 1.91	4.62 ± 0.97	2.65 ± 0.48	1.88 ± 0.09	-0.26 ± 1.04
	DCM	19.40 ± 0.76	20.94 ± 0.62	23.85 ± 0.97	24.02 ± 1.50	24.53 ± 1.50
	EtOAc	19.23 ± 2.05	17.35 ± 1.85	17.95 ± 1.71	19.74 ± 1.07	24.19 ± 0.94
	Aqueous	14.62 ± 2.33	19.49 ± 0.51	17.61 ± 1.26	17.35 ± 0.17	28.46 ± 0.44
	Vitamin C	12.17 ± 1.82	27.97 ± 4.47	32.14 ± 3.15	23.40 ± 1.17	50.93 ± 4.08

RSA (radical scavenging activities), data expressed as percent mean±SEM, *p<0.05 is considered significant when compared with control. DCM = dichloromehane, EtOAc = ethyl acetate

Table 3
Antioxidant activities of CC fractions and sub-fractions of HEHA

Treatments, CCF	Models		Treatments, CCsF (400	Models	
(400 ppm)	DPPH (%)	NOS (%)	ppm)	DPPH (%)	NOS (%)
M.1	43.84±1.54	38.29±4.70	M.4.1	44.76±1.23	45.40±7.33
M.2	56.67 ± 1.23	47.37 ± 1.97	M.4.2	32.03 ± 0.41	37.42 ± 7.22
M.3	54.41 ± 1.03	48.74 ± 5.85	M.4.3	$53.29 \pm .51$	45.73±3.72
M.4	57.29 ± 0.21	47.32 ± 5.31	Pectolinarigenin	54.93 ± 0.92	46.06 ± 2.30
M.5	52.46 ± 0.31	43.98 ± 6.24	M.4.5	50.72 ± 0.21	33.70 ± 3.17
Vitamin C	96.89 ± 0.16	53.27 ± 2.28	Vitamin C	96.89 ± 0.16	53.27 ± 2.28

Data expressed as mean \pm SEM, *p<0.05 when compared with controls; DPPH = 2, 2-diphenyl-1-picrylhydrazyl, NOS = nitric oxide scavenging, CCF = column chromatography fractions, CCsF = column chromatography sub-fractions

Table 4
Effects of solvent fractions on FBS level in diabetic rats

Treatment/dess (meg/les)	Mean reduction in FBS (%)				
Treatment/dose (mg/kg)	1 h	3 h	6 h		
5% Tween-20, 5 ml/kg	-10.09 ± 5.83	6.21 ± 5.56	35.80 ± 10.99		
Hexane soluble, 300	-12.09 ± 7.79	8.21 ± 1.78	38.89 ± 7.10		
DCM soluble, 300	-13.89 ± 10.94	-8.20 ± 16.59	22.87 ± 11.46		
EtOAc soluble, 300	37.50 ± 5.76	59.98 ± 8.43	53.34 ± 7.39		
aqueous soluble, 300	11.51 ± 3.59	16.65 ± 6.06	36.19 ± 1.77		
Glibenclamide, 2	6.80 ± 6.02	$47.92 \pm 14.47*$	60.73 ± 10.78		

Data expressed as mean \pm SEM, *p<0.05 when compared with 5% tween-20 treated group, DCM = dichloromehane, EtOAc = ethyl acetate

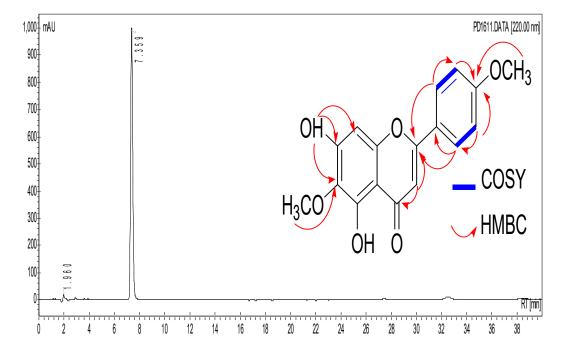


Fig. 1: HPLC chromatogram of pectolinarigenin (tR 7.359 min, structure and key HMBC and COSY correlations insert). COSY = proton-proton correlation spectroscopy, HMBC = carbon-proton heteronuclear multiple bond correlation,

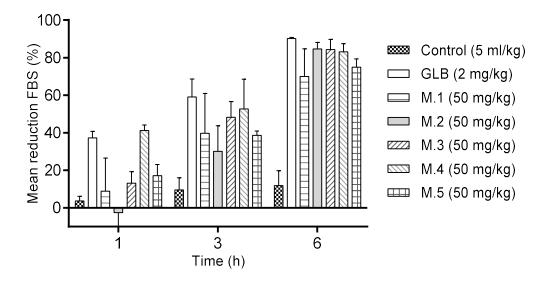
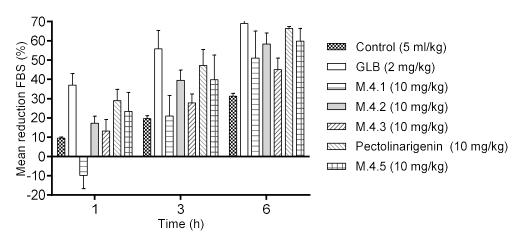



Fig. 2: Effects of CC fractions on FBS of alloxan-induced diabetic rats. *p < 0.05 when compared with negative control group. GLB = glibenclamide, M.1-M.5 = column chromatography (CC) fractions

Fig. 3: Effects of CC sub-fractions on FBS of alloxan-induced diabetic rats. *p < 0.05 when compared with negative control group. GLB = glibenclamide, M.4.1-M.4.5 = column chromatography (CC) sub-fractions.

The effects of CC fractions (M.1 - M.5) on the FBS of alloxan-induced diabetic rats are presented in Fig. 2. At 1 h post treatment, M.4 and GLB caused significant (p < 0.05)

increases in percentage reduction of FBS in the treated-groups when compared to distilled water-treated group. At 3 h post treatment, GLB, M.3, M.4 and M.5 produced significant (p < 0.05) increases in percentage reduction of FBS when compared to distilled water-treated group. At 6 h post treatment, GLB and all the fraction caused significant (p < 0.05) increase in percentage reduction of FBS when compared to distilled water-treated group.

The effects of CC sub-fractions on FBS of alloxan-induced diabetic rats are presented in Fig. 3. The GLB and sub-fractions (except M.4.1) caused time-dependent increases in the percentage reduction of FBS in treated rats. At 1 and 3 h post treatment, the percentage reductions in FBS of GLB and M.4.4-treated rats were elevated (p < 0.05) when compared with the negative control. At 6 h post treatment, the percentage reduction in FBS of GLB, M.4.2, pectolinarigenin and M.4.5-treated rats were elevated (p < 0.05) when compared with the negative control.

Our findings are in agreement with the reports of Liao and coworkers on the antidiabetic properties of pectolinarigenin isolated from Cirsium japonicum (Liao et al., 2010). According to the study, pectolinarigenin reduced blood glucose, cholesterol and triglyceride levels, but did not alter the levels of plasma insulin, GLUT-4 and leptin in the treated diabetic rats. The pectolinarigenin also increased the expression of adinopectin in plasma and adipose tissue, increased the activities of glycolytic enzymes and reduced the activities of gluconeogenic enzymes in diabetic rats (Liao et al., 2010). These findings by previous researchers suggest that the mechanism of the antidiabetic activities of pectolinarigenin extrapancreatic; it improves insulin sensitivity, enhances glucose utilization by skeletal muscles and reduces hepatic glucose production (Liao et al., 2010).

CONCLUSION

We are the first to report the isolation of pectolinarigenin (5,7-dihydroxy-6,4'-dimethoxyflavone) from *Helianthus annuus*. It elicited significant antioxidant and antidiabetic activities and might be useful in the

development of novel antidiabetic, antioxidant and anti-inflammatory compounds.

67

ACKNOWLEDGEMENT

The authors are grateful to Mr. A.O. Ozioko for the identification of the plant sample.

REFERENCES

- Aba PE and Asuzu IU (2018). Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A review. *Indian J. Nat. Prod. Resour.*, **9**(2): 85-96.
- Amakura Y, Yoshimura M, Yamakami S and Yoshida T (2013). Isolation of phenolic constituents and characterization of antioxidant markers from sunflower (*Helianthus annuus*) seed extract. *Phytochem. Lett.*, **6**(2): 302-305.
- American Diabetes Association (2009). Diagnosis and classification of diabetes mellitus. *Diabetes Care.*, **32** Suppl(1): S62-S67.
- Bashir T, Zahara K, Haider S and Tabassum S (2015). Chemistry, pharmacology and ethnomedicinal uses of *Helianthus annuus* (sunflower): A review. *Pure Appl. Biol.*, **4**(2): 226-235.
- Berim A and Gang DR (2016). Methoxylated flavones: occurrence, importance, biosynthesis. *Phytochem. Rev.*, **15**: 363-390
- Bhutkar M and Bhise S (2013). *In vitro* hypoglycemic effects of *Albizzia lebbeck* and *Mucuna pruriens*. *Asian Pac. J. Trop. Biomed.*, **3**(11): 866-870.
- Bibi Y, Nisa S, Chaudhary FM and Zia M (2011). Antibacterial activity of some selected medicinal plants of Pakistan. *BMC Complement. Altern. Med.*, 11: Article number: 52.
- Ceccarini L, Macchia M, Flamini G, Cioni PL, Caponi C and Morelli I (2004). Essential oil composition of *Helianthus annuus* L. leaves and heads of two cultivated hybrids "Carlos" and "Florom 350". *Ind. Crops Prod.*, **19**(1): 13-17.

- Chen Z, Kong S, Song F, Li L and Jiang H (2012). Pharmacokinetic study of luteolin, apigenin, chrysoeriol and diosmetin after oral administration of Flos Chrysanthemi extract in rats. *Fitoterapia*., **83**(8): 1616-1622.
- Ekor M (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. *Front Pharmacol.*, **4**: 177.
- Farhadi F, Khameneh B, Iranshahi M and Iranshahy M (2019). Antibacterial activity of flavonoids and their structure–activity relationship: An update review. *Phytother. Res.*, **33**(1): 13-40.
- Guo S, Ge Y and Jom KN (2017). A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (*Helianthus annuus* L.). *Chem. Cent. J.*, **11**(1): 95.
- International Diabetes Federation (2019).

 Diabetes Atlas 9th edition, IDF, Brussels.

 Available at: https://diabetesatlas.org/
 upload/resources/2019/IDF_Atlas_9th_Ed
 ition 2019.pdf
- Jeong HC, Shim YS, Rhee YK, Choi SY, Hong HD, Chung J, Han MJ and Cho CW (2013). Quantification of marker compounds in *Cirsium setidens* Nakai by HPLC-DAD. *Food Sci. Biotechnol.*, 22(6): 1481-1486.
- Liao Z, Chen X and Wu M (2010). Antidiabetic effect of flavones from *Cirsium japonicum* DC in diabetic rats. *Arch. Pharm. Res.*, **33**(3): 353-362.
- Lim H, Son KH, Chang HW, Bae K, Kang SS and Kim HP (2008). Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from *Cirsium chanroenicum*. *Biol*. *Pharm*. *Bull*., **31**(11): 2063-2067.
- Lobo V, Patil A, Phatak A and Chandra N (2010). Free radicals, antioxidants and functional foods: Impact on human health. *Pharmacogn. Rev.* **4**(8): 118-126.
- Lu M, Kong Q, Xu X, Lu H, Lu Z, Yu W, Zuo B, Su J and Guo R (2014). Pectolinarigenin-a flavonoid compound from *Cirsium japonicum* with potential antiproliferation activity in mcf-7 breast

- cancer cell. *Trop. J. Pharm. Res.*, **13**(2): 225-228.
- Marcocci L, Maguire JJ, Droylefaix MT and Packer L (1994). The nitric oxide-scavenging properties of *Ginkgo biloba* extract EGb 761. *Biochem. Biophys. Res. Commun.*, **201**: 748-755.
- Miean KH and Mohamed S (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. *J. Agric. Food Chem.*, **49**(6): 3106-3112.
- Noh H, Lee H, Kim E, Mu L, Rhee YK, Cho CW. et al. (2013). Inhibitory effect of a Cirsium setidens extract on hepatic fat accumulation in mice fed a high-fat diet via the induction of fatty acid β-oxidation. Biosci. Biotechnol. Biochem., 77(7): 1424-1429.
- Onoja SO and Anaga AO (2014). Evaluation of the antidiabetic and antioxidant potentials of methanolic leaf extract of *Helianthus annuus* L. on alloxan-induced hyperglycemic rats. *Comp. Clin. Pathol.*, **23**: 1565-1573.
- Onoja SO, Ezeja MI, Omeh YN and Onwukwe BC (2017). Antioxidant, anti-inflammatory and antinociceptive activities of methanolic extract of *Justicia secunda* Vahl leaf. *Alexandria J. Med.*, 53: 207–213.
- Onoja SO, Nnadi CO, Udem SC and Anaga AO (2020). Potential antidiabetic and antioxidant activities of a heliangolide sesquiterpene lactone isolated from *Helianthus annuus* L. leaves. *Acta Pharmaceut.*, **70**(2): 215-226.
- Patel OP, Mishra A, Maurya R, Saini D, Pandey J, Taneja I, Raju KSR, Kanojiya S, Shukla SK, Srivastava MN, Wahajuddin M, Tamrakar AK, Srivastava AK and Yadav PP (2016). Naturally Occurring Carbazole Alkaloids from Murraya koenigii as potential antidiabetic agents. J. Nat. Prod., 79(5): 1276-1284.
- Sebai H, Selmi S, Rtibi K, Gharbi N and Sakly M (2015). Protective effect of *Lavandula* stoechas and *Rosmarinus officinalis* essential oils against reproductive damage

and oxidative stress in alloxan induced diabetic rats. J. Med. Food., 18: 241-249.

- Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, and Tousoulis D (2019). The role of inflammation in diabetes: Current concepts and future perspectives. *Eur. Cardiol.*, **14**(1): 50-59.
- Unnikrishnan MK, Veerapur V, Nayak Y, Mudgal PP and Mathew G (2014). Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoids. *In*: Polyphenols in Human Health and Disease. Watson RR, Preedy VR and Zibadi S (eds.). Academic Press, 43-161.
- Wang C, Cheng Y, Liu H, Xu Y, Peng H, Lang J, Liao J, Liu H, Liu H and Fan J (2016). Pectolinarigenin suppresses the tumor growth in nasopharyngeal carcinoma. *Cell. Physiol. Biochem.*, **39**(5): 1795-1803.

- Yoo YM, Nam JH, Kim MY, Choi J and Park HJ (2008). Pectolinarin and pectolinarigenin of *Cirsium setidens* prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. *Biol. Pharm. Bull.*, **31**(4): 760-764.
- Zhang T, Li S, Li J, Yin F, Hua Y, Wang Z, Lin B, Wang H, Zou D, Zhou Z, Xu J, Yi C and Cai Z (2016). Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. *Cell Death Dis.*, 7(10): e2421.
- Zhao G, Qin GW, Wang J, Chu WJ and Guo LH (2010). Functional activation of monoamine transporters by luteolin and apigenin isolated from the fruit of *Perilla frutescens* (L.) Britt. *Neurochem. Int.*, **56**(1): 168-176.